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Abstract
We investigate the convergence properties of a perturbation method proposed
some time ago and reveal some of its most interesting features. Anharmonic
oscillators in the strong-coupling limit prove to be appropriate illustrative
examples and a suitable benchmark.

PACS number: 03.65.Ge

1. Introduction

Some time ago Bessis and Bessis (BB from now on) [1] proposed a new perturbation approach
in quantum mechanics based on the application of a factorization method to a Riccati equation
derived from the Schrödinger one. They obtained reasonable results for some of the energies
of the quartic anharmonic oscillator by means of perturbation series of order fourth and sixth,
without resorting to a resummation method. In spite of this success, BB’s method has passed
unnoticed as far as we know.

The purpose of this paper is to investigate BB’s perturbation method in more detail. In
section 2, we write it in a quite general way and derive other approaches as particular cases. In
section 3, we carry out perturbation calculations of sufficiently large order and try to find out
numerical evidence of convergence. One-dimensional anharmonic oscillators prove to be a
suitable benchmark for present numerical tests. For simplicity, we restrict to ground states and
choose straightforward logarithmic perturbation theory instead of the factorization method
proposed by BB [1]. Finally, in section 4 we discuss the results and draw some conclusions.

2. The method

In the standard Rayleigh–Schrödinger perturbation theory we try to solve the eigenvalue
equation

Ĥ� = E�, Ĥ = Ĥ 0 + λĤ ′ (1)
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by expanding the energy E and eigenfunction � in a Taylor series about λ = 0. This method
is practical provided that we can solve the eigenvalue equation for λ = 0.

In some cases it is more convenient to construct a parameter-dependent Hamiltonian
operator Ĥ (β) that one can expand in a Taylor series about β = 0

Ĥ (β) =
∑
j=0

Ĥ jβ
j (2)

in such a way that we can solve the eigenvalue equation for Ĥ (0) = Ĥ0. In this case we
expand the eigenfunctions �(β) and eigenvalues E(β) in Taylor series:

�(β) =
∞∑

j=0

�jβ
j , E(β) =

∞∑
j=0

Ejβ
j . (3)

There are many practical examples of application of this alternative approach [2]. In particular,
BB [1] suggested the following form of Ĥ (β):

Ĥ (β) = Ĥ + (β − 1)Ŵ (β), Ŵ (β) =
∑
j=0

Ŵjβ
j , (4)

where Ĥ (1) = Ĥ . Comparing equations (2) and (4) we conclude that

Ĥ 0 = Ĥ − Ŵ0, Ĥ j = Ŵj−1 − Ŵj , j > 0. (5)

In principle there is enormous flexibility in the choice of the operator coefficients Ŵj as we
show below by derivation of two known particular cases.

If we restrict expansion (4) to just one term Ŵ (β) = Ŵ (0) = Ŵ0 then Ĥ (β) =
Ĥ − Ŵ0 + βŴ0. Choosing Ŵ0 = Ĥ − Ĥ 0(α) = Ĥ ′(α), where Ĥ 0(α) is a parameter-
dependent Hamiltonian operator with known eigenvalues and eigenfunctions, we obtain the
method proposed by Killingbeck [3] some time ago. The main strategy behind this approach
is to choose an appropriate value of the adjustable parameter α leading to a renormalized
perturbation series with the best convergence properties [2, 3].

If we consider two terms of the form Ŵ0 = Ĥ − Ĥ 0(α) and Ŵ1 = λĤ ′, then we derive
the Hamiltonian operator Ĥ (β) = Ĥ 0(α) + β[Ĥ 0 − Ĥ 0(α)] + β2λĤ ′ that Killingbeck et al
[4] have found to be even more convenient for the treatment of some perturbation problems.
Those approaches are practical if we can solve the eigenvalue equation for β = 0 and all
relevant values of α.

We should mention that it was not the aim of BB to obtain renormalized series with an
adjustable parameter but to choose the operator coefficients Ŵj in such a way that they could
solve the perturbation equations

(Ĥ 0 − E0)�j =
j∑

i=1

(Ei − Ŵi + Ŵi−1)�j−i (6)

in exact algebraic form [1].
For simplicity in this paper, we concentrate on a one-dimensional eigenvalue equation of

the form

� ′′(x) = [U(x) − E]�(x), U(x) = V (x) +
l(l + 1)

x2
. (7)

If �(0) = �(∞) = 0 and l = 0, 1, 2, . . . is the angular-momentum quantum number, this
equation applies to central-field models. If �(−∞) = �(∞) = 0 and l = −1, we have a
one-dimensional model. In particular, when V (x) = V (−x) then l = −1, and l = 0, select
the spaces of even and odd solutions, respectively. In any case the regular solution to the
eigenvalue equation (7) behaves asymptotically as xl+1 at the origin.
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In order to calculate perturbation corrections of sufficiently large order by means of BB’s
method we define

f (x) = s

x
− � ′(x)

�(x)
, s = l + 1 (8)

that satisfies the Riccati equation

f ′ +
2s

x
f − f 2 + V − E = 0. (9)

The corresponding equation for the Hamiltonian Ĥ (β) in equation (4) reads

f ′ +
2s

x
f − f 2 + V − E + (β − 1)W = 0, (10)

if we restrict to the case that Ŵ (β) = W(β, x) depends only on β and the coordinate. The
coefficients of the expansion

f =
∞∑

j=0

fjβ
j (11)

satisfy the perturbation equations

f ′
j +

2s

x
fj −

j∑
k=0

fkfj−k + V δj0 − Ej + Wj−1 − Wj = 0. (12)

3. Results

Simple one-dimensional anharmonic oscillators V (x) = x2 + λx2K,K = 2, 3, . . . , are a
suitable demanding benchmark for testing new perturbation approaches. We easily increase
the degree of difficulty by increasing the values of the coupling parameter λ and anharmonicity
exponent K. BB applied their method to the first four energy levels of the model with K = 2
and several values of λ, restricting their calculation to perturbation theory of order four and
six [1]. Here we consider the strong-coupling limit (λ → ∞) of the oscillators mentioned
above:

V (x) = x2K. (13)

Note that if the perturbation series gives acceptable results for this case, then it will certainly
be suitable for all 0 < λ < ∞. Moreover, the perturbation corrections for these models are
simpler enabling us to proceed to higher orders with less computational requirement.

In order to make present discussion clearer we first illustrate the main ideas of the method
with the pure quartic oscillator K = 2. We try polynomial solutions of the form

fj (x) =
j+1∑
m=0

cj,2m+1x
2m+1, j = 0, 1, . . . (14)

in the perturbation equations (12) for the ground state (s = 0 ). Substitution of f0(x) into the
perturbation equation of order zero leads to

−c2
0,3x

6 + (1 − 2c0,1c0,3)x
4 +

(
3c0,3 − c2

0,1

)
x2 + c0,1−E0−W0 = 0. (15)

In order to have a solution with c0,3 �= 0 we choose W0 = −c2
0,3x

6; then c0,3 = 1/(2c0,1), and
3c0,3 − c2

0,1 = 0 becomes a cubic equation with two complex and one real root. If we select
the later we finally have

f0 = 121/3

2
x + 12−1/3x3, W0 = −12−2/3x6, E0 = 121/3

2
≈ 1.1447. (16)
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Table 1. Padé approximants [N, N ] for the ground states of the quartic (K = 2) sextic (K = 3(b))

and octic (K = 4) oscillators.

N K = 2 K = 3(b) K = 4

1 1.060 996 335 262 11 1.130 792 741 075 56 1.210 520 271
2 1.060 358 707 944 51 1.145 013 857 041 72 1.203 379 654
3 1.060 362 220 792 74 1.144 794 069 904 71 1.225 903 753
4 1.060 362 043 227 21 1.144 807 763 229 51 1.225 811 686
5 1.060 362 100 291 30 1.144 802 298 405 45 1.225 826 780
6 1.060 362 090 588 62 1.144 802 434 896 11 1.225 839 331
7 1.060 362 090 607 31 1.144 802 453 936 88
8 1.060 362 090 488 82 1.144 802 453 343 62
9 1.060 362 090 482 95

10 1.060 362 090 482 46
11 1.060 362 090 483 01
12 1.060 362 090 484 23
13 1.060 362 090 484 20
14 1.060 362 090 484 17
15 1.060 362 090 484 17
16 1.060 362 090 484 08
17 1.060 362 090 484 18
18 1.060 362 090 484 18
19 1.060 362 090 484 18
20 1.060 362 090 484 17
21 1.060 362 090 484 18
22 1.060 362 090 484 18
23 1.060 362 090 484 18

Exact 1.060 362 090 484 183 1.144 802 453 80 1.225 820 11

We expect the resulting unperturbed wavefunction

�0 ∝ exp

(
−121/3

4
x2 − x4

4 × 121/3

)
(17)

to be an improvement on the harmonic-oscillator one in the standard Rayleigh–Schrödinger
perturbation theory [2–4]. The zeroth-order energy (16) is reasonably close to the exact value
shown in table 1 which was obtained with the Riccati–Padé method [5].

At first order we have

−122/3

6
c1,5x

8 − 121/3

(
c1,5 +

121/3c1,3

6
+

1

12

)
x6 +

(
5c1,5 − 121/3c1,3 − 122/3c1,1

6

)
x4

+(3c1,3 − 121/3c1,1)x
2 + c1,1 − E1 − W1 = 0. (18)

We easily solve this equation if W1 = −122/3c1,5x
8/6; the result is

f1 = − 5

112
121/3

(
x +

121/3

3

)
− 3x5

56
, W1 = 122/3x8

112
,

(19)

E1 = − 5

112
121/3 ≈ −0.1022.

The energy corrected through first order is somewhat closer to the exact value: E0 + E1 ≈
1.0425.

The systematic calculation of perturbation corrections of larger order offers no difficulty
if we resort to a computer algebra system. Since we are unable to prove rigorously whether the
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Figure 1. log |Ej/E0| versus j for the ground states of the quartic (K = 2), sextic (K = 3 and
K = 3 (b)) and octic (K = 4) oscillators.

perturbation series converges for β = 1, we resort to numerical investigation. Figure 1 shows
that log |Ej/E0| first decreases rapidly as j increases, but then it increases slowly suggesting
that the series does not converge. If we assume that the error on the energy estimated by the
partial sum

E[M] =
M∑

j=0

Ej (20)

is proportional to the first neglected term |E − E[M]| ≈ |EM+1|, then it is reasonable to
truncate the perturbation series at the smallest value of |EM+1| [6]. In this case we find that
E26 = −0.389 768 6104 × 10−7 is the energy coefficient with the smallest absolute value so
that our best estimate is E[25] = 1.060 362 15 (compare with the exact value in table 1).

We proceed exactly in the same way for the pure sextic oscillator K = 3. Figure 1
shows values of log |Ej/E0| that clearly suggest poorer convergence properties than in
the preceding example. The energy coefficient with the smallest absolute value is E15 =
0.275 911 8288 × 10−5, and our best estimate E[14] = 1.144 70 is reasonably close to the
exact eigenvalue in table 1. It is not surprising that perturbation theory yields poorer results
for K = 3 than for K = 2 [2] because the former potential is more singular at infinity than
the latter.

For the pure octic anharmonic oscillator K = 4 we look for polynomial solutions of the
form

fj (x) =
j+3∑
m=0

cj,2m+1x
2m+1, j = 0, 1, . . . . (21)

In this case we have calculated less perturbation coefficients because they require more
computer memory and time. Surprisingly, the values of log |Ej/E0| in figure 1 suggest that
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the perturbation series for K = 4 exhibits better convergence properties than the one for
K = 3 just discussed. The energy coefficient with the smallest absolute value (among those
we managed to calculate) is E12 = −0.520 549 3999 × 10−5 so that our best estimate is
E[11] = 1.225 822 which is quite close to the exact one in table 1.

The surprising fact that the convergence properties of the perturbation series are clearly
poorer for K = 3 than for K = 4 suggests that there should be better solutions for the former
case. If we try

fj (x) =
j+2∑
m=0

cj,2m+1x
2m+1, j = 0, 1, . . . (22)

then the values of log|Ej/E0| are smaller than those obtained earlier (compare K = 3(b)

with K = 3 in figure 1). The coefficient with the smallest absolute value is E15 =
−0.234 406 6313 × 10−6 and our best estimate results to be E[14] = 1.144 8015.

It is well known that Padé approximants give considerably better results than power series
[6]. We have tried diagonal Padé approximants [N,N ] on the perturbation series for the cases
K = 2,K = 3(b) and K = 4, and show results in table 1. Note that the Padé approximants
sum the K = 2 series to a great accuracy but they are less efficient for K = 3(b) and
K = 4. This is exactly what is known to happen with the standard perturbation series for
anharmonic oscillators [7]. However, Padé approximants appear to improve the accuracy of
present perturbation results in all the cases discussed above.

4. Conclusions

Present numerical investigation on the perturbation method proposed by Bessis and Bessis [1]
suggests that although the series may be divergent they are much more accurate than those
derived from the standard Rayleigh–Schrödinger perturbation theory. One obtains reasonable
eigenvalues for difficult anharmonic problems of the form V (x) = x2K , and results deteriorate
much less dramatically than those from the standard Rayleigh–Schrödinger perturbation series
as the anharmonicity exponent K increases. In order to facilitate the calculation of perturbation
corrections of sufficiently large order we restricted our analysis to polynomial solutions that
are suitable for the ground state. The treatment of rational solutions for excited states (such
as those considered by BB [1]) is straightforward but increasingly more demanding.

Following BB [1] we have implemented perturbation theory by transformation of the
linear Schrödinger equation into a nonlinear Riccati one. In this way, the appropriate form
of each potential coefficient Wj reveals itself more clearly as shown in section 3 for the
quartic model. However, in principle one can resort to any convenient algorithm because the
perturbation method is sufficiently general as shown in section 2.

A remarkable advantage of the method of BB [1], which may not be so clear in their
paper, is its extraordinary flexibility as shown by the two solutions obtained above for the case
K = 3. Moreover, the method of BB, unlike two other renormalization approaches derived
above as particular cases [3, 4], does not require and adjustable parameter to give acceptable
results.

One may rise doubts about the practical usefulness of perturbation theory to treat problems
of actual interest in quantum mechanics. When one is able to obtain the perturbation
coefficients in terms of the quantum numbers, then it takes as little effort to calculate the
ground-state energy as well as highly excited ones [2]. On the other hand, the computation
time increases with the quantum number when one resorts to a numerical method. In some
other cases, perturbation theory provides analytical functions of the perturbation parameter
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that yield, for example, the energies of an atom or molecule for any chosen value of an external
field [2]. Since perturbation theory is likely to be one of the first approaches commonly tried on
problems in quantum mechanics, statistical mechanics and other fields of theoretical physics,
there has been great interest in the convergence properties of the perturbation series [2].

The implementation of present perturbation theory by means of logarithmic perturbation
theory is not as practical as other strategies for the calculation of highly excited energy levels
[2]. We have chosen it because it greatly facilitates the systematic calculation of perturbation
coefficients of sufficiently large order for the ground state that are necessary for testing the
convergence properties of the method. In principle, the generalization of the method outlined
in section 2 is expected to facilitate the application of any alternative implementation of
perturbation theory [2]. We believe that further investigation on the method of BB [1] will
produce more unexpected surprises.
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